Weaver: A High Performance,
Transactional Graph
Datahase Based on Refinahle Timestamps

By Dubey et al.

Presented by: Ishank Jain

Department of Computer Science

W UNIVERSITY OF WATERLOO
/@\ FACULTY OF MATHEMATICS

R R =
CONTENT

= Related work

= Research question
= Method

= Challenges

= Results

= Future work

= Questions

Weaver: A High Performance, W UNIVERSITY OF WATERLOO
Transactional Graph PAGE 2 /@\ FACULTY OF MATHEMATICS
Database Based on Refinable Timestamps

R R =
RELATED WORK

Offline Graph Processing Systems

Online Graph Databases

Temporal Graph Databases

Consistency Models

Concurrency Control

; W’ UNIVERSITY OF WATERLOO
Weaver: A High Performance,
Transactional Graph PAGE 3 /@\ FACULTY OF MATHEMATICS
Database Based on Refinable Timestamps

R R =
RESEARCH QUESTION

« Existing systems either operate on offline snapshots, provide weak
consistency guarantees, or use expensive concurrency control techniques

that limit performance.

= The key challenge in a transactional system is to ensure that distributed
operations taking place on different machines follow a coherent timeline.

W UNIVERSITY OF WATERLOO
N

W : A High Perf ,
eaver: A High Ferformance 2> FACULTY OF MATHEMATICS

Transactional Graph PAGE 4
Database Based on Refinable Timestamps

PROBLEM EXAMPLE

= Path discovery query
n3 -> n5: removed
n5 -> n7: added

ni->ny?

Weaver: A High Performance, W UNIVERSITY OF WATERLOO
Transactional Graph PAGE 5 /@\ FACULTY OF MATHEMATICS
Database Based on Refinable Timestamps

R R =
REDIFINALBLE TIMESTAMPS

= This technique Couples a) coarse-grained
vector timestamps b) a fine-grained

begin_weaver_tx ()

. . photo = create_node()
timeline oracle to pay the overhead. ovn_edge = create_edge (user, photo)
» Fine-grained timeline oracle is used for ordering assign_property (own_edge,)

for nbr in permitted_neighbors:
access_edge = create_edge(photo, nbr)
assign_property(access_edge,)
commit_weaver_tx ()

only the potentially-conflicting reads and writes.

Weaver: A High Performance, W UNIVERSITY OF WATERLOO
Transactional Graph PAGE 6 /@\ FACULTY OF MATHEMATICS
Database Based on Refinable Timestamps

= Uses scatter-gather like property.

node_program(node, prog_params):

= Node programs are sometimes stateful. nxt_hop = []
. if not node.prog_state.visited:
= Node program state is garbage collected after for edge in node.neighbors:
the query terminates on all servers. if edge.check(prog_params.edge_prop):

nxt_hop.append((edge.nbr,prog_params))
node.prog_state.vigited = true
return nxt_hop

= Consistency: Weaver delays execution of a node
program at a shard until after execution of all
preceding and concurrent transactions.

= Supports transitivity.

m UNIVERSITY OF WATERLOO
Towards Dependable Data Repairing with Fixing Rules PAGE 7 /@\ FACULTY OF MATHEMATICS

ARGHITECTURE
Timeline Coordinator Shard Servers

= Shard Servers: The shard servers are responsible for | Client | oo .
executing both node programs and transactions on the '
in-memory graph data.

Timeline Oracle i

|

Gatekeeper | '

Client Il
Gatekeeper t .

Gatekeeper |

Client £ £ 777 //\\\ /] g
| i - |

|| Backing Cluster ;

Client : Store Manager | :

Weaver: A High Performance, W UNIVERSITY OF WATERLOO
Transactional Graph PAGE 8 FACULTY OF MATHEMATICS
Database Based on Refinable Timestamps

= Backing Store:
= Use HyperDex Warp as backing store.

= Data recovery in case of failure.

= Directs transactions on vertex.

Weaver: A High Performance,
Transactional Graph
Database Based on Refinable Timestamps

R R =
ARCHITECTURE

Warp: Lightweight Multi-Key Transactions for Key-Value Stores

Robert Escriva’, Bernard Wongi, Emin Giin Sirer!
T Computer Science Department, Cornell University
¥ Cheriton School of Computer Science, University of Waterloo

Abstract

Traditional NoSQL systems scale by sharding data
across multiple servers and by performing each opera-
tion on a small number of servers. Because transactions
necessarily require coordination across multiple servers,
NoSQL systems often explicitly avoid making transac-
tional guarantees in order to avoid such coordination.
Past work in this space has relied either on heavyweight
protocols, such as two-phase commit or Paxos, or clock
synchronization to perform this coordination.

This paper presents a novel protocol for providing
ACID transactions on top of a sharded data store. Called
linear transactions, this protocol allows transactions to
execute in natural arrival order unless doing so would vi-
olate serializability. We have fully implemented linear
transactions in a commercially available data store. Ex-
periments show that Warp achieves 3.2 x higher through-
put than Sinfonia’s mini-transactions on the standard
TPC-C benchmark with no aborts. Further. the svstem

PAGE 9

Google’s Megastore [5] shard the data across different
Paxos groups based on their key, thereby gaining scala-
bility, but incur higher coordination costs for actions that
span multiple groups. An alternative approach, pursued
in Calvin [43], is to serialize all operations using a con-
sensus protocol and use deterministic execution to im-
prove performance. Google’s Spanner [12] relies on the
TrueTime API to assign timestamps to transactions with-
out cross-server synchronization. Compared to tradi-
tional NoSQL systems with simple and scalable designs,
these systems introduce spurious coordination between
transactions. Spurious coordination is when a transac-
tion processing protocol unnecessarily delays or reorders
transactions’ execution in order to enforce an order be-
tween transactions that could be applied in natural arrival
order. Coarse-grained consensus groups and centralized
sequencers both exhibit varying degrees of spurious co-
ordination.

This paper introduces Warp, a NoSQL system that

%9 UNIVERSITY OF WATERLOO
FACULTY OF MATHEMATICS

ARGHITECTURE
Timeline Coordinator Shard Servers

= Timeline Coordinator: 0 S ——— -

» Gatekeeper Timeline Oracle :

|

= Timeline oracle Gatekeeper | I
Client | |

Gatekeeper [;

Gatekeeper |

Client { [/’\\ A ;

/ | | vl

|| Backing Cluster i

Client »’ Store Manager

Weaver: A High Performance, W UNIVERSITY OF WATERLOO
Transactional Graph PAGE 10 FACULTY OF MATHEMATICS
Database Based on Refinable Timestamps

R R =
ARCHITECTURE

Timeline Coordinator Shard Servers

= Cluster Manager: T R —— SR |
= Failure detection, Timeline Oracle ; E
i T |

= System reconfiguration. Gatekeeper ; | E
Client | [

Gatekeeper i i |

Gatekeeper |

: |

Client f /’\\ 7 §

| | STl

|| Backing Cluster i

Cliont »’ Store Manager | ;

Weaver: A High Performance, W UNIVERSITY OF WATERLOO
Transactional Graph PAGE 11 FACULTY OF MATHEMATICS
Database Based on Refinable Timestamps

R R =
PROACTIVE ODERING USING GATEKEEPERS

= Vector clock.

» Maintains a happens-before partial order bet GKO | 0 41'1'05 2 4 3 | 4 |
refinable timestamps. A

« Synchronization period.) 1 S 3 :2.""1:13 42)

CONIUSRETE R

<0.1.3> 31w

6K2 Y b

Ti{1,1,0) < Ty(3,4,2) and T(0,1,3) < Ty(3,1,5). Ty and Ty

are concurrent and require fine-grain ordering only if they conflict.

Weaver: A High Performance, UNIVERSITY OF WATERLOO

Transactional Graph PAGE 12 Eg FACULTY OF MATHEMATICS
Database Based on Refinable Timestamps

R R =
PROACTIVE ODERING USING GATEKEEPERS

Timestamps in Message-Passing Systems That Preserve the Partial Ordering
Colin J. Fidge

Department of Computer Science, Australian National University, Canberra, ACT.

ABSTRACT

Timestamping is a common mecthod of totally ordering events in concurrent programs.
However, for applications requiring access to the global state, a total ordering is inappro-
priate. This paper presents algorithms for timestamping events in both synchronous and
asynclhironous message-passing programs that allow for access to the partial ordering in-
herent in a parallel system. The algorithins do not change the communications graph or
require a central timestamp issuing authority.

Keywords and phrases: concurrent programming, message-passing, timestamps, logical clocks
CR. categories: D.1.3

Weaver: A High Performance,
Transactional Graph PAGE 13 @
Database Based on Refinable Timestamps

W UNIVERSITY OF WATERLOO
77 FACULTY OF MATHEMATICS

R R =
REACTIVE ORDERING BY TIMELINE ORACLE

= Timeline oracle: <110
= Guarantees graph remains acyclic. GK0 I 0 4 _}li 2‘ Jr 3 i 4 i
= Event dependency graph and new event creation. 3 47
GK1 | -+
013> 31w
6K2 Y b

Ti{1,1,0) < Ty(3,4,2) and T(0,1,3) < Ty(3,1,5). Ty and Ty

are concurrent and require fine-grain ordering only if they conflict.

Weaver: A High Performance, W UNIVERSITY OF WATERLOO
Transactional Graph PAGE 14 /@\ FACULTY OF MATHEMATICS
Database Based on Refinable Timestamps

R R =
TRANSACTIONS

« Transaction executed on backing store to ensure Concurent mnsachions
validity. GRO T <1,00- 1T <3.1.0|

« FIFO channels, Queue .
= NOP transactions GKk1 T <2.1,0> ' T <220> .
Queue - L2 i

G211 571
Queue | -

Weaver: A High Performance, m UNIVERSITY OF WATERLOO
Transactional Graph PAGE 15 /@\ FACULTY OF MATHEMATICS
Database Based on Refinable Timestamps

R R =
FAULT TOLERANCE

= Graph data persistently stored on backing store.
= All node programs, are re-executed by Weaver with a fresh timestamp after recovery.

= To maintain monotonicity of timestamps on gatekeeper failures, a backup gatekeeper
restarts the vector clock for the failed gatekeeper.

; W’ UNIVERSITY OF WATERLOO
Weaver: A High Performance,
Transactional Graph PAGE 16 /@\ FACULTY OF MATHEMATICS
Database Based on Refinable Timestamps

R R =
GRAPH PARTITIONING & CACHING

= Streaming graph partitioning algorithms:
= To reduce communication overhead.

= (Caching analysis for path discovery:
= Path stored in cache at each vertex

= Path deleted from cache once an edge in path deleted.

Weaver: A High Performance, m UNIVERSITY OF WATERLOO
Transactional Graph PAGE 17 /@\ FACULTY OF MATHEMATICS
Database Based on Refinable Timestamps

R R =
EVALUATION

CoinGraph
BC.info ===

0.5 13
> 0.4 T 10
> 0.3 -
= v 6.5
;5 (.2 < K
- < < o
- 0.1 o 3 =
< < K 's’é
0 - 4 O —
/ \)\ / o\ Q) Q)\ \)) \))\
4~ o 0, 7 O S 0O D
¢ Uy %% % %
Bitcoin Block Bitcoin Block

Average latency (secs) of a Bitcoin block query in blockchain application.

Weaver: A High Performance, W UNIVERSITY OF WATERLOO
Transactional Graph PAGE 18 FACULTY OF MATHEMATICS

Database Based on Refinable Timestamps

R R =
EVALUATION

0.8
0.6
0.4
0.2

Titan: 99.8% reads
Titan: 75% reads
Weaver: 99.8% reads

Weaver: 75% reads
| 10 100 1000

CDF

Latency (ms)

Transaction latency for a social network workload on the LiveJournal graph.

Weaver: A High Performance, m UNIVERSITY OF WATERLOO
Transactional Graph PAGE 19 FACULTY OF MATHEMATICS
Database Based on Refinable Timestamps

R R =
EVALUATION

18k

12k -

ok

Throughput (1x/s)

| 234567289
Number of shard servers

Shows almost linear scalability with the number of shards

Weaver: A High Performance, m UNIVERSITY OF WATERLOO
Transactional Graph PAGE 20 /@\ FACULTY OF MATHEMATICS
Database Based on Refinable Timestamps

R R =
RESULTS

= Weaver enables CoinGraph to execute Bitcoin block
queries 8x faster than Blockchain.info.

= outperforms Titan by 10.9x on social network
workload and outperforms GraphLab by 4x on node
program workload

= Weaver scales linearly with the number of
gatekeeper and shard servers for graph analysis
queries.

m UNIVERSITY OF WATERLOO
Towards Dependable Data Repairing with Fixing Rules PAGE 21 /@\ FACULTY OF MATHEMATICS

R R =
IMPORTANT POINTS

= Proactive costs due to periodic synchronization messages between gatekeepers,
and the reactive costs incurred at the timeline oracle needs to be carefully
balanced.

= As synchronization period increases, the reliance on the timeline oracle
increases.

= TrueTime system assumes no network or communication latency, so a system
synchronized with average error bound € will necessarily incur a mean latency
of 2e.

= Number of shard servers and gatekeepers in shard are the potential bottleneck
for the query throughput. As synchronization period increases, the reliance on
the timeline oracle increases.

; W UNIVERSITY OF WATERLOO
Weaver: A High Performance,
Transactional Graph PAGE 22 /@\ FACULTY OF MATHEMATICS
Database Based on Refinable Timestamps

R R =
QUESTIONS

= Why is node program allowed to visit a vertex multiple times in the weaver
model] ?

= The graph data in shard severs are kept in-memory, will keeping all data in-
memory increase performance at expense of cost?

= Does creation of new event by timeline oracle in anyway effect the model ?
(adding overheads)

; W’ UNIVERSITY OF WATERLOO
Weaver: A High Performance,

Transactional Graph PAGE 23 /@\ FACULTY OF MATHEMATICS
Database Based on Refinable Timestamps

Ayush Dubey, Greg D. Hill, Robert Escriva, and Emin Giin Sirer. Weaver: a high-
performance, transactional graph database based on refinable timestamps. Proc.

VLDB Endow. 9(11): 852-863, 2016.

W UNIVERSITY OF WATERLOO
N

Weaver: A High Performance,
FACULTY OF MATHEMATICS

Transactional Graph PAGE 24 @
Database Based on Refinable Timestamps

